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 ➔ MIC improves the State of the Art across 
● Vision tasks: classification, 
segmentation, detection

● Domain gaps: synthetic/real, day/night, 
clear/adverse weather

Problem: Networks trained on one domain often experience a performance 
drop on another domain

Solution: Adapt network to unlabeled target images, e.g. using self-training
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Goal: Enhance the learning of context relations on target domain
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 ➔ Road/sidewalk and pedestrian/rider are confused
 ➔ Parts are correctly recognized (e.g. curb in foreground and legs of rider)
 ➔ Previous UDA methods insufficiently exploit context clues

Context Utilization of MIC

 ➔ MIC better distinguishes 
visually similar classes 
such as road/sidewalk
and pedestrian/rider

- Randomly mask out target image patches
- Predict semantics for entire image (incl. masked patches)

 ➔ Network learns to utilize contextTraining 
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 ➔ Domain context gap 
can require learning 
target-specific relations

 ➔ High mask ratio with 
medium-sized patches 
works best

 ➔ EMA teacher and pseudo label 
confidence weighting enhance MIC

 ➔ MIC improves classes with important context

 ➔ MIC can be combined with various UDA 
methods and yields significant gains
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