
1 Domain Adaptation (UDA)

Example Predictions

Problem: Networks trained on one domain often 
experience a performance drop on another domain

Solution: Adapt network to unlabeled target images, for 
example using self-training [2,3]

Comparison with State-of-the-Art
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 ➔ HRDA improves
    the State-of-the-Art   
    by 5.5 mIoU

HRDA: Context-Aware High-Resolution
Domain-Adaptive Semantic Segmentation
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2 HRDA Motivation
Problem: UDA is more GPU memory demanding than 
supervised learning
Approach 1: Training with downscaled images
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 ➔ Fails to preserve fine details

 ➔ Fails to capture context 
    (crucial for UDA)

 ➔ Preserves fine
    details

Approach 2: Training with random crops
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UDA Method GPU Memory mIoU in %
Naive HR (75% crop size) 22.0 GB 70.0 ± 1.2
HRDA (75% crop size) 13.5 GB 71.3 ± 0.3
HRDA (Full crop size) 22.5 GB 73.8 ± 0.3

Class-Wise IoU in %

 ➔ HRDA improves the
    performance across 
    different UDA methods
    and networks

Multi-Resolution Training
● Large low-resolution (LR) crops for long-range context
● Small high-resolution (HR) crops for fine details
● Learned scale attention for scale-dependent adaptation
●  Manageable GPU memory consumption

Multi-View Pseudo-Label Generation
● Multi-resolution fusion with scale attention
● Detail context fusion with overlapping sliding window
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 ➔ HRDA improves
    small objects and
    difficult classes

 ➔ HRDA improves over training   
    with only context/detail crop

 ➔ Scale attention is crucial
 ➔ Overlapping detail pseudo-
labels increase robustness

 ➔ Additional detail loss helps 
    learning HR features
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 ➔ HRDA outperforms 
    naive HR training
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