

<u>Problem</u>: Networks trained on one domain often

example using self-training [2,3]

2

supervised learning

<u>Approach 1</u>: Training with downscaled images

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

Lukas Hoyer, Dengxin Dai, Luc Van Gool • github.com/lhoyer/HRDA

Evaluation on GTA→Cityscapes 5

Comparison with State-of-the-Art

UDA Method	Network	
Entropy Min. [5]	DeepLabV2 [1]	
Adversarial [4]	DeepLabV2 [1]	
DACS [3]	DeepLabV2 [1]	
DAFormer [2]	DeepLabV2 [1]	
DAFormer [2]	DAFormer [2]	
		40 45
Network		

Ablation Study

Detail Crop Context Crop Multi-Crop (Average) +Scale Attention +Overlapping Detail +Detail Loss

UDA Method	GPU Memory	mloU in %
Naive HR (75% crop size)	22.0 GB	70.0 ± 1.2
HRDA (75% crop size)	13.5 GB	71.3 ± 0.3
HRDA (Full crop size)	22.5 GB	73.8 ± 0.3

Example Predictions

 \rightarrow HRDA improves over training with only context/detail crop \rightarrow Scale attention is crucial \rightarrow Overlapping detail pseudolabels increase robustness \rightarrow Additional detail loss helps learning HR features

→ HRDA outperforms naive HR training