
DAFormer: Improving Network Architectures and Training Strategies 
for Domain-Adaptive Semantic Segmentation

Rare Class Sampling (RCS)
Problem: Source domain class distribution is heavily imbalanced
Solution: Sample images with rare classes more often

Lukas Hoyer, Dengxin Dai, Luc Van Gool  •  github.com/lhoyer/DAFormer

1 Unsupervised Domain Adaptation (UDA)
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Problem: UDA methods were only evaluated on outdated network architectures 
(e.g. DeepLabV2 [1])

Solution: Design of an architecture tailored for UDA
● Hierarchical Transformer encoder [3]
● Context-aware multi-level feature fusion decoder

Comparison with State-of-the-Art

Ablation Study

2 Improved Network Architecture for UDA

3 Improved Training Strategies for UDA 4 Evaluation on GTA Cityscapes➔
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Thing-Class ImageNet Feature Distance (FD)
Problem: Distinctive features from ImageNet pre-training are forgotten
Solution: Reduce distance to ImageNet features of thing-classes, which are part of 
ImageNet

➔ DAFormer improves the 
State-of-the-Art by 10.8 mIoU

➔ Each component contributes 
a significant performance improvement

➔ The pre-trained Transformer encoder 
better separates vehicle classes

➔ DAFormer particularly improves difficult classes

Problem: Networks trained on one domain often experience a performance 
drop on another domain

Solution: Adapt network to unlabeled target images, e.g. using self-training [2]

Learning Rate Warm-Up
Problem: A high learning rate distorts features from pre-training in the early training
Solution: Start training with small learning rate

Network 
Architecture

UDA Oracle UDA / 
Oracle

DeepLabV2 [1] 56.0 72.1 77.7%
Hierarchical 
Transformer [3]

67.0 76.8 87.2%

Full DAFormer 68.3 77.6 88.0%

  ➔ DAFormer newly reveals the high potential of Transformers for UDA
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Sample images containing class c with probability , where

is the class frequency in the source dataset.

 ➔ RCS samples more pixels 
with rare classes

 ➔ Rare classes are learned better and more 
stably with RCS
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➔ ImageNet features
distinguish thing-
classes

ImageNet Features of Transformer

➔ w/o FD the class 
“train” is forgotten

 ➔ w/ FD “train” is 
successfully adapted

Image w/o UDA ProDA [4] DAFormer G. Truth

y-axis is scaled logarithmically

https://github.com/lhoyer/DAFormer
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