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Unsupervised Domain Adaptation (UDA)

Problem: Networks trained on one domain often experience a performance

drop on another domain
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Solution: Adapt network to unlabeled target images, e.g. using self-training [2]

Source Image X

Student Net

:[Augmentation

v

' EMA Update

Source Loss Ls]q-l_
Target Loss LT]<-L

Source Label y

>[ Teacher Net H y
Stop Gradient

>

Target Pseudo-Label

n Improved Network Architecture for UDA

Problem: UDA methods were only evaluated on outdated network architectures
(e.g. DeepLabV2 [1])

Solution: Design of an architecture tailored for UDA

* Hierarchical Transformer encoder [3]
* Context-aware multi-level feature fusion decoder
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- DAFormer newly reveals the high potential of Transformers for UDA

n Improved Training Strategies for UDA

Rare Class Sampling (RCS)
Problem: Source domain class distribution is heavily imbalanced

Solution: Sample images with rare classes more often
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- Rare classes are learned better and more

- RCS samples more pixels
stably with RCS

with rare classes

Thing-Class ImageNet Feature Distance (FD)

Problem: Distinctive features from ImageNet pre-training are forgotten

Solution: Reduce distance to ImageNet features of thing-classes, which are part of
ImageNet
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- w/o FD the class
“train” Is forgotten

-> w/ FD “train” Is
successfully adapted

- ImageNet features
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Learning Rate Warm-Up
Problem: A high learning rate distorts features from pre-training in the early training
Solution: Start training with small learning rate
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Evaluation on GTA->Cityscapes

Comparison with State-of-the-Art
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- DAFormer improves the
State-of-the-Art by 10.8 mioU

2018

- DAFormer particularly improves difficult classes

Ablation Study
Ablations on GTA-to-Cityscapes

ResNetl01 ImageNet Features MiT-B5 ImageNet Features

Baseline (DeeplLabV?2)
+Learn. Rate Warm-Up
+Transformer Encoder

+lmageNet Feat. Dist.

+Rare Class Sampling

+Context-Aware Fusion

LI S fence  pole

~pole trlight sign
(Gl I Al person rider car  truck  bus

train Al GERVI'G

48 52 56 ©60 64 68
mloU in %, SD over 3 seeds

- Each component contributes
a significant performance improvement

- The pre-trained Transformer encoder
better separates vehicle classes

Example Predictions
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