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1 Concept

2 Transfer and Multi-Task Learning

3 DepthMix

4 Automatic Data Selection for Annotation

Self-Supervised Depth Estimation (SDE)
+ Requires only unlabeled image sequences
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Motivation: Mitigate occlusion artifacts
Approach:  Select pixels closer to camera
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Real-World Examples

Concept

Comparison with State of the Art

i=argmaxIi∈GU ‖log(1+f SDE (I i))−log(1+f SIDE(I i))‖1

Diversity Sampling: Select sample i with high SDE feature ΦSDE distance to GAi=argmaxIi∈GU minIj∈GA‖ΦiSDE
−Φ jSDE

‖2

Motivation:  Select most beneficial samples to be annotated
Approach:   Iterative sample selection with SDE proxy-task oracle
Advantage: No human in the loop → increased flexiblity, efficiency, and scalability

Advantage: Geometrically valid mixing

- Transfer and Multi-Task Learning enable
  effective feature transfer

- Mixing improves pseudo-labeling
- DepthMix outperforms ClassMix [5]

- Autom. Data Selection outperforms human-
  in-the-loop active learning with entropy
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Uncertainty Sampling: Select sample i with high depth student error

DepthMix produces precise mixing boundaries and effectively handles occlusions  

- Ours better distinguishes difficult classes (e.g. truck, train, and bus)
- Ours segments finer structures at depth discontinuities (e.g. rider, pole, and tr. sign) 

Each contribution significantly outperforms baseline

- Combination further improves performance
- Combination achieves fully-supervised 
  baseline performance with only 1/8 labels

- Multi-Task Learning improves  
  classes with depth discontinuities
- Autom. Data Selection improves  
  difficult classes
- DepthMix improves both

- Our method outperforms previous
  SotA methods by a significant margin
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- Our contributions can also improve 
  the fully-supervised performance

Advantage:        Knowledge from SDE reduces necessary annotations for semantic segm.
Implementation: https://github.com/lhoyer/improving_segmentation_with_selfsupervised_depth

Motivation: Utilize depth features for semantic segmentation
Approach: 
      - Transfer Learning: Initialize segmentation branch with depth pretraining
      - Multi-Task Learning: Exchange features between depth and segmentation decoder
Advantage: SDE learns features from a large set of unlabeled image sequences

Example Predictions
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